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ABSTRACT

The propagation of meridional circulation below the base of the convection zone of
low-mass stars may play a crucial role in the transport of angular momentum and also

significantly contribute to the transport of chemical species and magnetic fields within
their stable radiative zone. We systematically study these large-scale mean flows by

performing three-dimensional (3D) global numerical simulations in a spherical shell
that consists of a convection zone (CZ) overlying a stably stratified region. We find

that the meridional flows can penetrate distances as large as ∼ 0.21ro (where ro is
the outer radius) below the base of the convection zone, provided that the Eddington-

Sweet timescale tES is much shorter than the viscous timescale tν as measured by the
parameter σ = (tES/tν)

1/2. In the solar-like regime where σ . 1 in the upper radiative

zone (RZ), we find that the angular momentum transport in the deep RZ is determined

primarily by the action of the Coriolis force on meridional flows. In contrast, in models
run in the σ > 1 regime, the meridional flows become weaker and the viscous effects

dominate. We find that the penetration lengthscale δMC of these mean flows when
σ . 1 is proportional to σ−0.22. Our findings may provide a better understanding of

the role of the meridional flows in the dynamics of the solar interior and inform future
numerical studies that are focused on capturing solar-like dynamics self-consistently.

1. INTRODUCTION

Helioseismic observations have provided us with the Sun’s rotational profile and have revealed that

its radiative interior rotates almost uniformly while the outer convective region rotates differentially,
with the equator rotating faster than the poles (e.g., Brown et al. 1989; Thompson et al. 2003; Howe

2009). Differential rotation such as that observed in the Sun (i.e., with a rapidly-rotating equator)
is thought to be maintained through anisotropic angular momentum transport arising in response to

the tendency of convective cells to organize into columnar-like structures (e.g., Zhang 1992; Busse
2002; Aurnou et al. 2007; Camisassa & Featherstone 2022).
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The action of the Coriolis force on the differential rotation is such that near the rapidly-rotating

equator, fluid motions are driven away from the rotation axis whereas near the slowly rotating
poles, the Coriolis force acts instead to push the flow toward the rotation axis. The result of this

process, known as “gyroscopic pumping”, is to drive axisymmetric motions (the nominal meridional
circulation) in the north/south and radially inward/outward directions. Gyroscopic pumping had

been initially studied in the context of the Earth’s circulation and later discussed in the astrophysical
context for its role in the solar interior dynamics (McIntyre 2007; Garaud & Acevedo Arreguin 2009;

Garaud & Bodenheimer 2010; Wood et al. 2011; Miesch & Hindman 2011).
In the near-surface layers, a variety of helioseismic and surface-feature-tracking techniques have re-

vealed the Sun’s meridional flow to be predominantly poleward within each hemisphere, with a charac-
teristic speed of 10-20 m/s (e.g., Komm et al. 1993; Švanda et al. 2007; Ulrich 2010; Hathaway et al.

2022). Unlike the well-known solar rotational profile, however, there is no clear consensus on the
structure of meridional circulation in the deep convection zone. In particular, substantial disagree-

ment regarding the depth of the return flow, as well as the multi- or mono-cellular nature of the

meridional flow, persists between measurements made using different instruments and helioseismic
techniques (e.g., Zhao et al. 2013; Jackiewicz et al. 2015; Gizon et al. 2020). This disagreement in-

creases with depth and, as a result, the question of the penetration of these mean flows below the base
of the convection zone into the underlying radiative zone remains unanswered. Meridional flows are

nevertheless thought to play an important role in the dynamics that arise near the interface between
the convection and radiative zones, mediating the mixing of chemical species (e.g., Pinsonneault

1997), the transport of angular momentum and the transport of magnetic fields (Gough & McIntyre
1998; McIntyre 2007; Wood et al. 2011; Acevedo-Arreguin et al. 2013; Wood & Brummell 2018).

Direct numerical simulations offer an alternative means to explore meridional flows below the
base of the convection zone. As with all such studies, however, care must be taken to ensure that

the simulated system is operating in a parameter regime relevant to the physical system under
consideration. The sense of differential rotation realized in a spherical convection zone, for example,

is known to depend on the ratio of the buoyancy and Coriolis forces. When buoyancy is dominant,
a so-called antisolar differential rotation with rapidly-rotating poles and a slowly-rotating equator

develops (e.g., Gastine et al. 2014). For this reason, models designed to study the Sun are constructed

such that the Coriolis force in dominant over buoyancy.
In a similar vein, the structure and penetration depth of meridional flows are thought to be deter-

mined by the competition of two timescales, namely the timescale associated with viscous diffusion
and the timescale related to the advection of the gyroscopically-pumped meridional flows. When

viscous effects dominate, the meridional flows are exponentially damped in depth and confined to
a small region below the inner convective boundary. When viscous effects are negligible, gyro-

scopic pumping causes meridional flows to penetrate long distances below the base of the convection
zone (Garaud & Brummell 2008; Garaud & Acevedo Arreguin 2009; Garaud & Bodenheimer 2010;

Wood & Brummell 2012; Acevedo-Arreguin et al. 2013).
In solar-type stars, viscous effects are negligible near the convection zone-radiative zone interface,

and in the case of the Sun, the timescale associated with the gyroscopically-pumped meridional flows
is much faster than that related to viscous diffusion in the upper part of the radiative region (see

Section 2, and e.g. Wood & Brummell 2012). A number of studies have examined angular momen-
tum transport and the driving of meridional flow in this low-diffusivity regime. Notably, the work of
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Garaud & Acevedo Arreguin (2009) and Wood & Brummell (2012) (see, also Garaud & Brummell

2008; Garaud & Bodenheimer 2010) demonstrated that when the proper ordering of timescales was
respected, meridional flows penetrated large distances below the base of the convection zone. These

calculations were carried out, however, either in axisymmetric spherical shells or in 3D Cartesian
boxes. That restricted geometry prevented the self-consistent development of differential rotation

and meridional circulation, which require a fully 3D, spherical domain to self-consistently capture
the mean flows and the convective motions that drive them. On the other hand, those models that

do account for these nonlinear and geometric effects were run in a regime where viscous effects were
dominant. For instance, Brun & Zahn (2006) and Strugarek et al. (2011) found in fully nonlinear

simulations employing 3D, spherical geometry that the angular momentum transport was dominated
by viscosity within the bulk of the RZ and the meridional circulation did not propagate substantially

beyond the base of the convection zone. Recently, Matilsky et al. (2022) also ran 3D magnetohydro-
dynamic (MHD) global simulations to study the self-consistent formation of the tachocline due to

dynamo action within the stable radiative zone. Their simulations were run in the non-solar regime

and consequently they also found that viscous diffusion played a dominant role in their dynamics.
In this paper, we seek to bridge the gap between these two approaches. Our goal is to understand

the dynamics occurring within the convection zone-radiative zone (CZ-RZ) interface, in a fully 3D,
spherical geometry, by exploring a range of parameter regimes in which either viscous or gyroscopic

pumping effects dominate. In Section 2, we describe our two-zone spherical shell formulation and
provide the set of anelastic Navier-Stokes equations along with the initial conditions, input param-

eters, and the boundary conditions used in our simulations. In Section 3, we present our results
related to the differential rotation and meridional circulation profiles within and below the CZ and

their dependence on the input parameters. We also discuss angular momentum transport within the
different parameter regimes and compare the time evolution of the corresponding fluxes among the

different cases. Finally in Section 4, we provide a summary of our findings along with a discussion
of their relation to other studies and the implications of these results for the solar interior dynamics.

2. MODEL FORMULATION

2.1. Dimensional Equations

We are interested in exploring the dynamics related to the global, large-scale flows arising in

rotating overshooting convection by accounting for a two-layered system with a stably stratified
region underlying a convective region. We assume a fixed aspect ratio ri/ro = 0.45 where ri is

the inner radius and ro is the outer radius of the spherical shell while the depth of the convec-
tive region is given by L = ro − rc = 0.2408ro, where rc = 0.7592ro is the radius at the inner

boundary of the CZ. The depth L is chosen such that it corresponds to the solar convection zone

from ∼ 0.7187R⊙ to ∼ 0.9041R⊙ − 0.9695R⊙, since we aim to focus on the deep interior dynamics
and not the radiative transfer processes occurring near and at the outer solar convective bound-

ary. Consequently, we employ the anelastic approximation which assumes small perturbations of the
thermodynamic variables compared with their mean while it also filters out the sound waves (Gough

1969; Gilman & Glatzmaier 1981). We solve the 3D Navier-Stokes equations under the anelastic and
Lantz-Braginsky-Roberts approximations (Lantz 1992; Braginsky & Roberts 1995) with the latter

being exact where the reference state is adiabatic.
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Then, the dimensional Navier-Stokes equations become

∂u

∂t
+ u · ∇u+ 2Ωoẑ × u =

g(r)

cp
Sr̂−∇(P/ρ̄) +

1

ρ̄
∇ ·D, (1)

∇ · (ρ̄u) = 0, (2)

ρ̄T̄

(
∂S

∂t
+ u · ∇S + ur

dS̄

dr

)
= ∇ · (ρ̄T̄ κ∇S) +Q+Φ, (3)

where u = (ur, uθ, uφ) is the velocity field, P is the pressure, ρ̄ is the reference density, T̄ is the
reference temperature, dS̄/dr is the background entropy gradient, S corresponds to the entropy

perturbations about the reference state, Ωo is the stellar mean frame rotation rate (for the Sun, this
corresponds to Ω0 = 2.87 · 10−6 rad/s), g(r) is the gravity (where g ∝ 1/r2), and cp is the specific

heat at constant pressure. We assume that the viscosity ν and the thermal diffusivity κ are constant
for simplicity. The viscous stress tensor D is given by

D = 2ρ̄ν(eij −
1

3
∇ · u), (4)

and the viscous heating is denoted by

Φ = 2ρ̄ν[eijeij −
1

3
(∇ · u)2], (5)

where eij is the strain rate tensor. We adopt an internal heating term Q that is similar to the one
formed in Model S (see e.g., Christensen-Dalsgaard et al. 1996) by making it proportional to the

reference pressure P̄ (for more details see Korre & Featherstone 2021). The internal heating satisfies
Q(r) = −∇ · Frad, where Frad is the radiative flux in the system given by

Frad(r) =
1

r2

∫ ro

r

Q(r′)r′2dr′. (6)

The equation of state is
ρ

ρ̄
=

P

P̄
− T

T̄
=

P

γP̄
− S

cp
, (7)

assuming the ideal gas law

P̄ = ℜρ̄T̄ , (8)

where ρ and T characterize respectively the density and temperature perturbations about the refer-

ence state, ℜ is the gas constant, and γ = cp/cv, where cv is the specific heat at constant volume.

To create our two-zone spherical shell, we choose a profile of dS̄/dr that satisfies an adiabatic
polytropic solution with γ = 5/3 in the convective region rc ≤ r ≤ ro and that forms a stably

stratified region for ri ≤ r < rc.
We also designate the number of density scale-heights in the convection zone through the parameter

Nρ = ln(ρ̄(rc))/ρ̄(ro)) (see Appendix of Korre & Featherstone (2021) for details). Then, we integrate
dS̄/dr from the bottom of the convection zone rc inward which results in a solution for S̄ with an

integration constant that matches the solution to the value of S̄ at rc.
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Given that the entropy for a monatomic ideal gas is S̄ = ln(P̄ 1/γ/ρ̄), we can differentiate S̄ with

respect to r, and apply the hydrostatic balance equation ∂P̄ /∂r = −ρ̄g. Then, we obtain

ρ̄

cp

dS̄

dr
+

g

γ
exp(−γS̄/cp)ρ̄

(2−γ) +
dρ̄

dr
= 0. (9)

This allows us to numerically solve for the reference density profile ρ̄(r) of any chosen background

entropy gradient profile.

2.2. Nondimensional Equations

We nondimensionalize equations (1)-(3) using the depth of the convection zone [l] = L as the
lengthscale, the velocity scale [u] = ν/L and the viscous timescale [t] = L2/ν. Throughout the

paper, we define the volume average of a quantity q(r, θ, φ) in the CZ as

qcz =

∫ ro
rc

∫ 2π

0

∫ π

0
q(r, θ, φ)r2 sin θdθdφdr

∫ ro
rc

∫ 2π

0

∫ π

0
r2 sin θdθdφdr

, (10)

the time and spherical average of a quantity q as

q̃(r) =
1

4π(t2 − t1)

∫ t2

t1

∫ 2π

0

∫ π

0

q(r, θ, φ, t) sin θdθdφdt, (11)

and the time and azimuthal average of a quantity q as

〈q(r, θ)〉 = 1

2π(t2 − t1)

∫ t2

t1

∫ 2π

0

q(r, θ, φ, t)dφdt. (12)

For the density and temperature scales, we use [ρ] = ρ̄cz, and [T ] = T̄cz, respectively. For the

entropy perturbations S, we choose a scaling associated with the thermal energy flux F such that
[S] = LFcz/(ρ̄czT̄czκ), where F (r) =

∫ r

ri
Q(r′)r′2dr′/r2. We determine our selected nondimensional

dS̄/dr profile in the RZ using the function

dS̄

dr
=

AS

2

(
1− tanh

(
r − rb
d

))
, (13)

where we vary AS, rb and d. In Figure 1, we show the profiles of dS̄(r)/dr versus r/ro for five typical

runs. We note that for larger values of AS, we obtain a more stably stratified RZ while the different
values of rb and d control the smoothness of the transition width between the two layers.

The nondimensional reference density ρ̄, reference temperature T̄ and gravity are equivalent to

the dimensional reference density, reference temperature and gravity divided by ρ̄cz, T̄cz, and gcz,
respectively. The nondimensional anelastic Navier-Stokes equations become

∂u

∂t
+ u · ∇u+

2

Ek
ẑ × u =

Ra

Pr
g(r)Sr̂−∇(P/ρ̄) +

1

ρ̄
∇ ·D, (14)

∇ · (ρ̄u) = 0, (15)
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0.5 0.6 0.7 0.8 0.9 1.0
r/ro

10−4

10−3

10−2

10−1

100

101

102

103

d
̄ S(
r)/
dr

casē3
casē5
casē9
casē10
casē12

Figure 1. Profiles of the nondimensional background entropy gradient dS̄(r)/dr versus the radius r/ro for
five representative runs with different AS , and/or rb and/or d (see Eq. (13)). The black dashed vertical
like marks the transition from the adiabatic convection zone (where dS̄(r)/dr = 0) to the subadiabatic layer
(where dS̄(r)/dr > 0).

ρ̄T̄

(
∂S

∂t
+ u · ∇S + ur

dS̄

dr

)
=

1

Pr
∇ · (ρ̄T̄∇S) +

1

Pr
Qnd +

DiPr

Ra
Φ, (16)

where Qnd = LQ/Fcz is the nondimensional internal heating function (for details, see

Korre & Featherstone 2021). We note that u = um + uf , where um is the mean, axisymmetric
part of the velocity corresponding to the large-scale motions related to rotation and uf is the fluctu-

ating component of the velocity field associated with the convective motions.
In all that follows, all the variables and parameters are now nondimensional and this nondimen-

sionalization introduces the flux Rayleigh number Ra, the Prandtl number Pr, the Ekman number
Ek and the dissipation number Di, which are defined respectively as

Ra =
gczFczL

4

cpρ̄czT̄czκ2ν
, Pr =

ν

κ
, Ek =

ν

ΩoL2
, and Di =

gczL

cpT̄cz

. (17)

We note that although Ra, Pr and Ek are free input parameters, Di is not as it depends on the chosen
Nρ and accounts for the fact that we have both a thermal scale and a kinetic scale. Thus, Di appears

in the thermal equation to account for the viscous heating term, which is intrinsically kinetic.
We have run a series of 3D numerical simulations solving equations (14)-(16) using the open-source

convection code Rayleigh (Featherstone & Hindman 2016; Matsui et al. 2016; Featherstone 2018).
We vary the background entropy gradient dS̄/dr as described above, the Rayleigh number, the

Ekman number, the number of density scale-heights in the convection zone Nρ while we keep the

Prandtl number fixed at Pr = 1 in order to avoid the excitation of unphysical modes that are known
to appear in rapidly rotating anelastic convection systems for values of Pr < 1 (e.g., Calkins et al.

2015).
We provide the parameters used in our simulations in Table 1. We also report on the convective

Rossby number Roc =
√
RaEk2/(4Pr) and the output Rossby number defined as Ro = U/(2LΩ0) =

ReEk/2, which is the ratio of inertial forces to the Coriolis force. Here, the first expression involves

dimensional quantities where U = urmsν/L is a typical dimensional velocity in the CZ and where for
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the value of urms, we use the total (fluctuating part and mean part) velocity averaged over the CZ and

weighted by density. The second expression includes nondimensional quantities where Re= UL/ν is
the Reynolds number extracted from the simulations while the Péclet number Pe is Pe = PrRe = Re

in our Pr = 1 runs (see Table 1).
We use impenetrable and stress-free boundary conditions for the velocity while for the entropy

perturbations, we assume ∂S/∂r|ri = 0 at the inner boundary and S|ro = 0 at the outer boundary.
Each simulation is evolved from a zero initial velocity and small-amplitude perturbations in the

entropy field until a statistically stationary and thermally equilibrated state is achieved.

2.3. Choice of Input Parameters

As discussed in Section 1, in order for the meridional circulation to penetrate below the base of the

CZ more deeply into the stable region, the correct ordering of timescales needs to be achieved in nu-

merical simulations even though the latter cannot account for real stellar values. The gyroscopically-
pumped meridional circulation operates on a timescale of the order of the Eddington-Sweet timescale

tES = N2L2/(Ω2
0κ) (see, e.g. Spiegel & Zahn 1992; Wood & Brummell 2012) which is shorter than

the viscous timescale tν = L2/ν in the upper solar radiative zone (Fig. 2). The ordering of

timescales, namely tES < tν , can be expressed via the parameter σ = (tES/tν)
1/2 =

√
ν/κN/Ω0

(Garaud & Acevedo Arreguin 2009; Garaud & Bodenheimer 2010; Wood & Brummell 2012). In our

nondimensional formulation, σ is written as

σ(r) =
√
PrN(r)Ek, (18)

where N(r) =
√

(Ra/Pr)g(dS̄(r)/dr) is the Brunt-Väisälä frequency.
We are interested in systematically investigating the dependence of the meridional flows on σ within

a 3D spherical shell that self-consistently accounts for large-scale mean flows. To achieve this, we
vary σ(r) below the base of the convection zone. In our Pr = 1 simulations, we can do so by varying

Ek and/or N(r) through Ra and/or dS̄(r)/dr. We note, however, that in our runs the variation in
σ(r) is mostly a result of the different dS̄/dr profiles chosen.

In Table 1, we show all the cases considered in this study by reporting σov which is σ evaluated
at the radius down to which the convective motions overshoot in each case. That is at rc − δGro,

where δG = δGf/ro is the overshoot lengthscale (for more details on how we calculate this, see Section
3 from Korre & Featherstone (2021)). In Korre & Featherstone (2021), we found that a convective

Rossby number Roc ≈ 0.5 leads to solar-like rotation with the equator rotating faster than the poles
in the convective region. Since we are interested in low-mass stars, we vary our input parameters

such that we are in the Roc ≈ 0.5 regime and study the influence of σ on the mean flow dynamics.
In Figure 2, we show the function σ(r) versus the radius r/ro below the base of the convection

zone for the same five representative runs illustrated in Figure 1. We also show the solar σ(r)

profile calculated from Model S (Christensen-Dalsgaard et al. 1996), where we have moved the solar
convection zone by 0.046ro to match the base of the CZ of our spherical shell so that all the σ(r)

profiles can be directly comparable in the same plot. For the calculation of the solar σ(r), we have
used the density, temperature, pressure, Brunt-Väisälä frequency, specific heat at constant pressure

and gravity of Model S while we have calculated the thermal diffusivity and viscosity (and as a result
the Prandtl number) using the formulae given in Garaud & Garaud (2008) (see also Gough 2007).

We see that case 9 has a smaller than one σ(r) profile within the whole RZ, while in case 10, σ(r)
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is overall small but smaller than unity only near the upper part of the radiative zone, similarly to

the actual solar case. Case 12 possesses a σ < 1 profile near the upper stable layer unlike cases 3
and 5 which both have σ >> 1 across the whole RZ. By illustrating different diagnostics of these

five typical cases that span a wide range of σov values, in the following sections, we will explore the
dynamics associated with the large-scale mean flows, and their dependence on σ.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
r/ro

10−2

10−1

100

101

σ(
r)

case 3
case 5
case 9
case 10
case 12
Model S, Sun

Figure 2. Profiles of σ(r) versus r/ro for the five runs with the dS̄/dr profiles presented in Figure 1. The
horizontal dashed black line corresponds to σ(r) = 1, while the black line corresponds to the computed solar
σ(r) profile with the base of the solar convection zone moved by 0.046ro to coincide with the base of the CZ
of the spherical shell (see text for details).

3. RESULTS

3.1. Differential Rotation Profiles

We begin our investigation by focusing on the rotational profiles of our simulations and the mean

flows associated with the differential rotation within and below the CZ. In Figure 3, we illustrate
profiles of the differential rotation 〈uφ〉/(r sin θ), for the five representative cases shown in Figure 2.

We verify that for Roc ≈ 0.5, the simulations have a solar-like rotation whereby the equatorial region
rotates more rapidly than the polar regions throughout the convection zone.

We do note that, while these models incorporate a region of overshoot, contours of isorotation

are largely parallel to the rotation axis, as opposed to tilted in the radial direction as observed
in the Sun (e.g., Howe et al. 2005). This “tilting” of the isorotation contours has been posited to

arise in response to strong latitudinal temperature variations established in the tachocline region
(Rempel 2005; Miesch et al. 2006). As in Korre & Featherstone (2021), we observe only very weak

deviations from cylindrical isorotation contours, in spite of the fact that a region of overshoot has
been included in these simulations. This is possibly because the thermal-wind balance required to

induce deviations from cylindrical isorotation is instead produced in response to uniform thermal flux



9

Table 1. Input and output parameters of the simulations

Case Nρ Ra Ek Roc Nr ×Nθ ×Nφ Ro δG Re δMC σov

1 2 106 0.001 0.5 192×1104×2208 0.054 0.023 108.5 0.096 1.9

2 2 105 0.0032 0.51 192×1104×2208 0.052 0.011 32.3 0.054 3.5

3 2 105 0.0032 0.51 192×1104×2208 0.051 0.010 32.1 0.037 4.7

4 2 105 0.0032 0.51 192×1104×2208 0.051 0.0094 31.9 0.0275 7.4

5 2 105 0.0032 0.51 192×1104×2208 0.051 0.0089 31.8 0.022 9.8

6 3 106 0.001 0.5 192×1104×2208 0.0432 0.021 86.4 0.123 0.38

7 3 5 · 105 0.0015 0.53 192×1104×2208 0.046 0.019 61.9 0.176 0.09

8 3 105 0.0032 0.51 192×1104×2208 0.0435 0.011 27.2 0.056 3.5

9 4 105 0.0032 0.51 192×1104×2208 0.0389 0.017 24.3 0.213 0.032

10 4 105 0.0032 0.51 192×1104×2208 0.0387 0.017 24.2 0.164 0.1

11 4 105 0.0032 0.51 192×1104×2208 0.0382 0.017 23.9 0.131 0.32

12 4 105 0.0032 0.51 192×1104×2208 0.0377 0.015 23.5 0.1 1.1

Note—Columns 2− 5 indicate the input parameters, column 6 provides the resolution and
columns 7− 11 report on the output parameters of the simulations.

at the upper boundary, which is not imposed for the models considered here (e.g., Matilsky et al.
2020).

None of the models illustrated in Figure 3 possess a true tachocline of shear at the base of the
convection zone. For all values of σov, differential rotation profiles established in the convection

zone are reflected to some extent in the radiative zone. This behavior is largely in accord with
the widely-accepted consensus that additional physics, such as magnetic fields (either primordial,

or dynamo, or both) are needed to reproduce the Sun’s rotation and the self-consistent emergence
of a tachocline (Gough & McIntyre 1998; Acevedo-Arreguin et al. 2013; Wood & Brummell 2018;

Matilsky et al. 2022).
We note, however, that for the low-σov cases, differential rotation in the equatorial region is con-

siderably more confined to the upper radiative zone than in the high-σov regime runs. This can be
seen more clearly in Figure 4 where we illustrate the radial dependence of the differential rotation

at different colatitudes for the case with σov = 0.1 and the case with σov = 9.8. We verify that the

profiles are quite different between the two cases, with the low-σov run presenting a smaller variation
of differential rotation below the base of the CZ and a profile at θ ≈ 90o that drops more rapidly

beyond rc, unlike the high-σov case. As we discuss in Section 3.3, in the systems with σov . 1.1,
it is advection of angular momentum by meridional circulation that halts the spread of differential

rotation that is otherwise observed in the equatorial regions of models with σov >> 1, where viscous
effects dominate. To see why this might be the case, we now examine the accompanying meridional

circulations established in these different models.

3.2. Meridional Flows Below the Base of the Convection Zone

We present profiles of the meridional circulation in Figure 5. There, we plot the time-

and azimuthally-averaged meridional circulation streamlines overlying the mass flux function
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Figure 3. Differential rotation profiles 〈uφ〉/(r sin θ) for the five representative runs spanning a wide range
of σov from a) σov = 0.032 up to e) σov = 9.8. For decreasing values of σov, the differential rotation is more
confined to the upper radiative zone within the equatorial region.

Figure 4. Profiles of the time- and azimuthally-averaged differential rotation profiles versus the radius r/ro
at different colatitudes θ for a) case 10 with σov = 0.1 and b) case 5 with σov = 9.8.

±
√

ρ̄u2
r + ρ̄u2

θ for those models illustrated in Figure 3. The mass flux has been colored to indicate the

handedness of the flow, such that clockwise circulations are blue, and counterclockwise circulations
are red. Within the convection zone, the meridional circulation is similar across all models, with

only minor differences among their amplitudes. Notably, all systems exhibit multiple circulation cells
within each hemisphere, as expected for the Roc < 1 regime in which these models were calculated

(e.g., Featherstone & Miesch 2015; Korre & Featherstone 2021; Camisassa & Featherstone 2022).
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It is below the base of the convection zone where significant differences in the meridional flow

morphology arise. For the low-σov models 9 and 10, the mean flows penetrate deeply into the
radiative zone, even reaching the lower boundary of the simulation domain, although their amplitude

is much diminished there. Models 3 and 5 possess values of σ that are larger than unity everywhere
in the radiative zone, and their resulting meridional flows are confined to a small depth just below

the base of the CZ. The intermediate case 12, which possesses σ(r) < 1 only in the upper radiative
zone (and a σov of 1.1) has meridional flows that travel well below the base of the CZ, beyond the

overshoot region but their amplitude rapidly decays in the deeper stable zone.
These results qualitatively support the earlier theoretical arguments and restricted-geometry

models discussed in e.g. Garaud & Brummell (2008), Garaud & Acevedo Arreguin (2009),
Wood & Brummell (2012), and Acevedo-Arreguin et al. (2013). When σ >> 1, in our runs N(r) is

large, namely the thermal stratification in the RZ is stronger and the meridional flows are viscously-
damped before they can extend to large depths below the base of the CZ unlike in the cases with

σ < 1 where the meridional flows are stronger and are able to propagate longer distances into the

RZ and even span the whole stable layer (Garaud & Brummell 2008; Garaud & Bodenheimer 2010).
A more quantitative picture of the meridional circulation can be seen in Figure 6. There, the time-

and azimuthally-averaged velocity uθ is shown as a function of radius at different colatitudes for the
solar-like case 10 with σov = 0.1 and the non-solar case 5 with σov = 9.8. We observe that the

meridional circulation is roughly similar in amplitude and structure at all θ in the CZ for both cases,
with the multicellular profiles seen by the change of sign of uθ in the convective region. We note that

the meridional circulation profiles are unlike those obtained from observations near the solar surface
due to diffusive effects in the boundary layer associated with the outer boundary condition employed

in our numerical simulations (for a more detailed discussion on this topic, see, Fuentes et al. 2024).
These trends in the meridional flow behavior are also evident in the radial profiles of the time- and

spherically-averaged kinetic energy related to the meridional circulation, ẼMC , which we define as

ẼMC(r) =
1

2
ρ̄(ũ2

m,r + ũ2
m,θ). (19)

We present profiles of ẼMC for each one of our representative cases in Figure 7a. We observe that
ẼMC(r) is approximately the same in the convection zone for all five cases but quite different within

the RZ. Indeed, ẼMC(r) decays faster beyond the inner convective boundary as σ becomes larger

there for the cases with σov > 1. More specifically, in the intermediate case 12 where σov = 1.1,
ẼMC(r) decreases in the RZ but the damping is slower compared with cases 3 and 5 where the

amplitude of ẼMC(r) becomes weaker more rapidly below the base of the CZ. In contrast, both cases
9 and 10, which have σov < 1, possess a larger kinetic energy in the meridional flows in the RZ as

well as a profile that gradually decays below rc but is not changing by much overall. This is similar
to what we qualitatively observed in Figure 5.

We can use these profiles to develop a more quantitative description of the penetration lengthscale
of the meridional flows in the RZ. For each simulation, we fit an exponential function of the form

f(r) = A · exp(−λ(r − rc)). (20)

to the ẼMC(r) data within the region spanning from the base of the CZ (r = rc) down to the

point where the profile of ẼMC is well fit by Equation (20) as depicted in Figure 7b for case 10.
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Once we have measured the decay rate λ for each case, we define the characteristic penetration

lengthscale of the meridional flow as δMC = δMCf/ro = 2/λ. We note that the prefactor 2 comes
from the fact that we fit the exponential function to the kinetic energy of the meridional flows,

but we are interested in the lengthscale associated with the meridional flows themselves, namely√
ẼMC ∝ e(−λ(r−rc))1/2 = e(−λ(r−rc)/2).
The relationship between the meridional penetration lengthscale δMC and the parameter σov is

illustrated in Figure 8. We find that this relationship is well described by a broken power law.
For those models with σov . 1.1, we find that δMC ∝ σ−0.22

ov . This scaling law suggests a weak

scaling of the penetration lengthscale of the meridional circulation with respect to σov for values of
σov . 1.1. It also provides a predictive tool that could be used to estimate the penetration depth

of the meridional circulation in stellar radiative zones that have σ < 1 (see Section 4). For values

of σov >> 1.1, we find that δMC ∝ σ−1
ov . This latter result is similar to what has been shown in

e.g. Garaud & Acevedo Arreguin (2009) and Wood & Brummell (2012), associated with the viscous

damping of the meridional circulation below the base of the CZ when σ >> 1.

Figure 5. Time- and azimuthally-averaged profiles of the meridional circulation streamlines with under-
lying contours of the mass flux where blue color corresponds to clockwise motion (CW), and red color to
counterclockwise motion (CCW) for the five typical runs spanning values of σov from a) 0.032 to e) 9.8. The
meridional flows present multiple cells within the convective region and for the cases where σov < 1 (a) and
b)), the flows penetrate more deeply into the stable layer below. In panel c) where σov = 1.1, there is still
substantial propagation of the meridional circulation below the base of the CZ while in panels d) and e)
where σov > 1, the mean flows only travel a small distance beyond the inner convective boundary.

3.3. Angular Momentum Transport

As discussed in Section 1, meridional flows can be driven in response to the redistribution of angular

momentum, an effect known as gyroscopic pumping. Here we explore this effect by examining the
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Figure 6. Meridional circulation profiles at different θ. Time- and azimuthally-averaged profiles of uθ
plotted from 0.65ro to ro at different colatitudes. The profiles illustrate the meridional flows in and below
the base of the CZ for a) σov = 0.1 (case 10) and b) σov = 9.8 (case 5).

Figure 7. Time- and spherically-averaged profiles of the kinetic energy in the meridional flows versus r/ro.
a) Profiles for the five representative runs. ẼMC is almost the same for all runs within the CZ, but changes
for the different σov cases in the RZ. For increasing values of σov, ẼMC decreases much faster below the base
of the CZ compared with the smaller σov cases. b) ẼMC profile for case 10 with σov = 0.1. An exponential
function (see Eq. (20)) is fitted to the kinetic energy data below the base of the CZ down to the point
where ẼMC is well fit. The computed decay rate λ for each simulation provides a penetration lengthscale
δMC = 2/λ for all runs shown in Table 1. The inner dashed black line corresponds to the base of the CZ in
both panels.
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Figure 8. Dependence of δMC on the parameter σov. The penetration lengthscale of the meridional flows
below the base of the CZ is δMC = (0.1± 0.006)σ−0.22±0.02

ov for the values of σov . 1.1. This scaling does not
hold for the runs with σov >> 1 whereby δMC ∝ σ−1

ov = (0.19 ± 0.01)σ−1
ov .

balances struck in our models between angular momentum transport due to meridional advection,
convective transport, and viscous stresses. We can obtain an expression for the conservation of

angular momentum by taking the zonal component φ of the momentum equation, multiplying it by
the momentum arm µ = r sin θ, averaging over both time and longitude and finally assuming a steady

state. When contributions due to the Lorentz force are neglected, we arrive at

−ρ̄〈umc〉 · ∇L − (∇ · FRS +∇ · F V S) = 0, (21)

where umc = (ur, uθ) and where L = µ2Ω, which can be nondimensionally expressed as

L = r sin θ

(
r sin θ

Ek
+ 〈uφ〉

)
. (22)

The nondimensional transport of angular momentum due to Reynolds stresses and due to viscous
stresses is given respectively by

F RS = ρ̄r sin θ(〈uf,ruf,φ〉, 〈uf,θuf,φ〉), (23)

F V S = ρ̄

(
〈um,φ〉 sin θ − r sin θ

∂〈um,φ〉
∂r

, 〈um,φ〉 cos θ − sin θ
∂〈um,φ〉

∂θ

)
. (24)

We expect that in the thermally-relaxed, statistically-steady state, the time-averaged term associated

with the Coriolis force ρ̄〈umc〉 · ∇L will be balanced primarily by the Reynolds stresses −∇ ·FRS in
the convection zone when viscous stresses can largely be neglected, as is typically true for high values

of Ra (see e.g., Featherstone & Hindman 2016). Deeper in the stable region, where the Reynolds
stresses are weaker, we expect the viscous stresses −∇·F V S to contribute significantly to the angular

momentum balance.
For all models presented in Table 1, we have verified that in the thermally-relaxed and statistically

stationary state, ρ̄〈umc〉·∇L ≈ −(∇·F RS+∇·F V S) within the CZ and the RZ. In all cases, we notice
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that −∇·F RS is more dominant in the bulk of the CZ while −∇·F V S is larger within the equatorial

region, especially near and somewhat below the bottom of the CZ. These results are illustrated in
Figure 9, where we show the balances achieved in two extreme cases, with σov = 0.1 and σov = 9.8.

We observe that in the CZ, the balance is achieved between the fluxes associated with both the
Reynolds and viscous stresses and the Coriolis force. The Reynolds stresses are somewhat stronger

than the viscous stresses as they seem to span the whole CZ unlike the viscous stresses which are
mostly present near the equatorial region. This is a result of the level of turbulence dictated by the

chosen Ra of our runs shown here, namely, even higher Ra simulations (which are harder to achieve
computationally in our two-zone spherical shell) need to be considered for the resulting Reynolds

stresses to completely balance the Coriolis term and the viscous stresses to be negligible across the
whole CZ. Nonetheless, deeper in the RZ (below the overshoot region), where convective motions

are much weaker or non-existent, viscosity becomes more important and counteracts ρ̄〈umc〉 · ∇L.
That is in fact expected in these simulations where there is no magnetism and reinforces what has

already been suggested in the literature, namely that a magnetic field, either primordial or dynamo

in nature, needs to be accounted for in solar-like simulations for the dynamics to be more consistent
with the Sun (see, e.g. Gough & McIntyre 1998; Acevedo-Arreguin et al. 2013; Wood & Brummell

2018; Matilsky et al. 2022).
We are interested in understanding the role that each one of the terms in Equation (21) plays in

the angular momentum transport over time, hence we now investigate the time evolution of their
absolute value. We expect to notice differences in the amplitudes of the fluxes that will depend on

σov for the cases demonstrated in Figure 10 which are all run at the same Ra. That is due to the
fact that in the solar-like regime where σov . 1.1, the meridional flows have a strong presence deeper

in the RZ below the overshoot region while for cases with σov >> 1, the mean flows are mostly
confined to a small region below the base of the CZ and their amplitude decays much faster beyond

the convective boundary.
To examine the angular momentum transport more quantitatively and understand the dependence

of the fluxes on σov, in Figure 10, we present the profiles of the absolute values of the fluxes, namely
| − ρ̄〈umc〉 · ∇L|, | −∇ ·F RS| and | −∇ ·F V S|, volume-averaged from their corresponding overshoot

region down to the bottom of the RZ (same calculation as in Equation (10) but radially integrated

from ri to rc−δGro). We find that |− ρ̄〈umc〉 ·∇L| is much larger than |−∇·F V S| for cases 9 and 10
with σov << 1 while its amplitude gradually decreases as σov becomes larger from panel a) to panel

c). In Figure 10d, for case 3, |− ρ̄〈umc〉 ·∇L| ≈ |−∇·F V S|, while for case 5 where σov >> 1 (Figure
10e), the flux associated with the Coriolis term is now smaller than the flux associated with viscosity,

namely | − ρ̄〈umc〉 · ∇L| < | − ∇ · F V S| which indicates that the angular momentum transport is
ultimately dictated by viscosity unlike what is expected to occur in the solar interior. Finally, we

notice that as expected (and discussed above), the Reynolds stresses are very weak deeper in the RZ
below the overshoot region.

These findings are consistent with the differential rotation profiles observed in Figure 3. For the
cases with lower σov values, we noticed that the differential rotation is more confined within the

equatorial region compared with the high-σov cases. In Figure 10, we found that in the low-σov cases,
the Coriolis term is dominant in the angular momentum transport in the RZ while as σov becomes

larger, the flux related to the mean flows decreases and as a result the viscous stresses eventually
control angular momentum transport. Consequently, in the cases with low σov, the propagation of
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Figure 9. Time- and azimuthally-averaged gyroscopic pumping terms of Equation (21) for two σov cases at
the same Ra. The gyroscopic pumping balance is achieved in both cases. a) In case 10 with σov = 0.1, the
meridional flows penetrate deeply into the RZ. The gyroscopic pumping occurs across the whole shell but is
more prominent within the CZ. b) In case 5 with σov = 9.8, the mean flows are confined to a small region
below the base of the CZ. The gyroscopic pumping balance holds everywhere across the shell for this run as
well, however it is negligible below the base of the CZ where the meridional flows rapidly decay.

the differential rotation in the RZ is due to the advection of the mean flows while in the cases with

high σov, it is due to viscous diffusion.
To better understand this behavior, in Figure 11, we show the the time- and azimuthally-averaged

radial fluxes related to the Reynolds stresses, the mean flows, the Coriolis force, and the viscous
stresses as well as the total radial flux, all plotted at the base of the CZ (at r = rc) and given

respectively by
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Figure 10. Time evolution of the absolute value of the terms in Equation (21) volume-averaged from
their overshoot region down to the inner RZ boundary for increasing values of σov spanning values from
a) σov = 0.032 to e) σov = 9.8. For smaller values of σov, the angular momentum transport is dictated by
the flux associated with the Coriolis force, however as σov increases, the Coriolis term becomes weaker and
viscosity plays a more important role and eventually dictates the angular momentum transport in the long
term.

Fr,R(rc, θ) = 〈ρ̄r sin θ(uf,ruf,φ)〉|rc , (25)

Fr,M(rc, θ) = 〈ρ̄r sin θ(um,rum,φ)〉|rc , (26)

Fr,C(rc, θ) =

〈
ρ̄r sin θ

(
um,rr sin θ

Ek

)〉
|rc , (27)

Fr,V (rc, θ) =

〈
ρ̄r sin θ

(
−r

∂

∂r

(um,φ

r

))〉
|rc , (28)

Fr,T (rc, θ) = Fr,R(rc, θ) + Fr,M(rc, θ) + Fr,C(rc, θ) + Fr,V (rc, θ). (29)

We notice that in the lower σov cases, the total flux Fr,T at the base of the CZ is positive near

the equatorial region, similarly to the flux related to the Coriolis force Fr,C, while the viscous flux
Fr,V < 0 there. On the other hand, in the cases with σov >> 1, Fr,T is negative around the equator

following the behavior of Fr,C and Fr,V . This finding suggests that the suppression of the propagation
of the differential rotation within the equator for the low-σov runs is a result of the radially outward

flux of angular momentum, which derives primarily from the interaction of meridional flow with the
Coriolis force. This lies in contrast with the high-σov cases where Fr,T << 0 leads to the inward

angular momentum transport and the deepening of the differential rotation in the RZ.
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Figure 11. Profiles of the time- and azimuthally-averaged fluxes given in Equations (25)-(29) computed
at the base of the CZ for increasing values of σov spanning values from a) σov = 0.032 to e) σov = 9.8. For
smaller (larger) values of σov, both Fr,T and Fr,C are positive (negative) near the equator indicating that
the angular momentum transport is outward (inward) there.

We note that the amplitudes and profiles of these fluxes do not only depend on σ(r) but also on Ra

and the density stratification Nρ. However, we found that in all of our runs, the differential rotation
for the lower σov runs is more contained within the equator and that Fr,C > 0 there, unlike in the

higher σov cases where both Fr,C and Fr,T are negative.

4. CONCLUSIONS

4.1. Summary and Discussion of Our Results

Our aim in this work has been to examine the dynamical balances associated with axisymmet-
ric mean flows in the radiative interior of a low-mass star such as the Sun. As discussed in

Wood & Brummell (2012), in the absence of magnetism, the balance that expresses the relative
importance of advective and viscous transport in the radiative interior is well-characterized by a

single parameter, σ (Eq. 18). Viscous effects are negligible when σ < 1, as is appropriate for a stellar
interior, and are dominant when σ > 1.

To date, models in the stellar-relevant regime have only been run in axisymmetric spherical or

Cartesian geometries, which cannot account for latitudinal variations of the mean flows. Spherical
models incorporating a region of overshoot have in turn been run only in the σ > 1 regime. In order

to bridge this gap, we have analyzed the results from a series of 3D global simulations spanning both
the σ ≤ 1 and σ > 1 regimes. These models are constructed in spherical geometry, incorporate

rotation, and consist of an outer convective region overlying a stably stratified layer.
Much as in the models of Garaud & Acevedo Arreguin (2009), Wood & Brummell (2012), and

Acevedo-Arreguin et al. (2013), we find that in the σ < 1 regime appropriate for the Sun, meridional
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flows can penetrate deeply into the RZ. In the σ > 1 regime, they decay exponentially in depth with

a lengthscale proportional to 1/σ (see Fig. 8). The deeply- and shallowly-penetrating flows arising
in these two regimes lead to markedly different balances in the angular momentum transport. For

increasing values of σov, the angular momentum flux arising from the Coriolis force becomes weaker,
and for cases with σov >> 1, the angular momentum transport is dictated primarily by the viscous

flux in the long term. In contrast, for simulations with σov << 1, the flux associated with the Coriolis
term is much larger than the viscous flux indicating that in the solar-like regime, the mean flows are

responsible for the transport of angular momentum.
The dominance of the Coriolis term in the σov << 1 regime is particularly notable near the equator

and leads to differences in the differential rotation that develops below the convection zone. The
differential rotation established in all models consists of a rapidly-rotating equator and slowly-rotating

polar regions. This general profile was found to extend below the base of the CZ for all models due
to either viscous diffusion (σov >> 1) or advection by the mean flows (σov ≤ 1.1). We note, however,

that for models with σov < 1, the rapid equatorial differential rotation does not extend as deeply as

it does in those with σov > 1 (see Fig. 3). These results suggest that meridional flows may play a
role in tachocline confinement at low latitudes, though a definitive statement cannot be made here

owing to the fact that this study did not consider the effects of magnetism.
Currently, even the most state-of-the-art simulations cannot capture real solar (and stellar) values

due to computational constraints arising from the required spatio/temporal resolution. As such, it is
important to ensure that since solar values are unattainable, they should not be used for certain input

parameters (e.g. N , and Ω) and ignored for others (e.g. Pr) as this may lead to non-solar/stellar
parameter regimes. Consequently, the resulting dynamics cannot effectively capture the dynamical

processes taking place in the solar interior and at the same time, any extrapolations to solar/stellar
parameters through derived scaling laws are dubious when they result from simulations that operate

in non-solar/stellar regimes.

4.2. Implications for Dynamical Processes in the Solar Interior

As we showed in Section 2, the solar σ profile is smaller than one in the upper radiative zone and

approximately equal to 0.5 around the base of the solar tachocline. Since we are reporting our results
based on the location of the overshoot lengthscale, we will use our estimate of the solar overshoot

depth from Korre & Featherstone (2021) and attempt to estimate the penetration lengthscale of the
meridional flows in the solar radiative interior. We have to note, however, that even though our

scaling law is derived from our runs that were operated within the solar-like regime where σ < 1, we
still need to be cautious when extrapolating our numerical results to the Sun and stars in general.

That is due to the fact that most of the other parameters have non-solar values, for instance our
largest Ra = 106 while Ra⊙ = 1020 and we used Pr = 1 while Pr⊙ = 10−6 (e.g., Ossendrijver 2003).

With that in mind, we may proceed to provide an estimate of δMC,⊙. In Korre & Featherstone

(2021), we assessed that the solar overshoot lengthscale is approximately equal to 0.1Hp, where
Hp = 5.7e9 cm is the pressure scale-height measured at the base of the solar CZ (using Model S).

Then the location of the overshoot depth is at rov ≈ 0.7r⊙ hence σov,⊙ ≈ 0.42 (where r⊙ = 0.9983R⊙ is
the radius at the base of the granulation layer and R⊙ = 6.957e10 cm). From the scaling law derived in

Section 3, we can then obtain δMC,⊙ = 0.1r⊙/(σ
0.22
ov,⊙) ≈ 0.12r⊙ which corresponds to δMC,⊙ ≈ 1.46Hp.

This result indicates that the meridional circulation might be penetrating much more deeply in the

solar interior than accounted for or anticipated by previous numerical studies and observations. In
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fact, we find that the meridional flows might travel as far as down to r = 0.59r⊙ = 4.098e10 cm,

which is even below the overshoot region and the tachocline.
If that is indeed the case, the meridional circulation may have a greater role to play in the transport

of chemical species within the RZ, as well as in the dynamical balances taking place within and
beyond the tachocline region. For instance, Gough & McIntyre (1998) suggested that a primordial

magnetic field in the RZ could confine the solar tachocline and enforce uniform rotation there by
interacting with the large-scale mean flows gyroscopically-pumped from the CZ deeper into the

RZ in a way that they could halt the magnetic field from entering the CZ. Also, our results may
hold implications for flux transport models where, in tandem with the tachocline, the meridional

flow plays an important role in modulating the magnetic cycle (e.g., Dikpati & Charbonneau 1999;
Charbonneau 2010). We plan to explore these topics in a future study that incorporates magnetism

into the models presented here.
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